首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2822篇
  免费   219篇
  国内免费   256篇
  2023年   38篇
  2022年   49篇
  2021年   130篇
  2020年   97篇
  2019年   113篇
  2018年   105篇
  2017年   91篇
  2016年   132篇
  2015年   180篇
  2014年   202篇
  2013年   260篇
  2012年   253篇
  2011年   230篇
  2010年   154篇
  2009年   120篇
  2008年   144篇
  2007年   142篇
  2006年   129篇
  2005年   111篇
  2004年   98篇
  2003年   101篇
  2002年   94篇
  2001年   47篇
  2000年   31篇
  1999年   28篇
  1998年   18篇
  1997年   11篇
  1996年   14篇
  1995年   10篇
  1994年   7篇
  1993年   4篇
  1992年   12篇
  1991年   9篇
  1990年   6篇
  1989年   12篇
  1988年   5篇
  1987年   5篇
  1986年   9篇
  1985年   9篇
  1984年   6篇
  1983年   6篇
  1982年   4篇
  1981年   5篇
  1979年   5篇
  1977年   10篇
  1976年   5篇
  1975年   6篇
  1974年   5篇
  1973年   6篇
  1969年   4篇
排序方式: 共有3297条查询结果,搜索用时 359 毫秒
91.
The epidermal growth factor receptor (EGFR) signaling pathway regulates cell proliferation, differentiation, and survival, and is frequently dysregulated in esophageal and gastric cancers. Few studies have comprehensively examined the association between germline genetic variants in the EGFR pathway and risk of esophageal and gastric cancers. Based on a genome-wide association study in a Han Chinese population, we examined 3443 SNPs in 127 genes in the EGFR pathway for 1942 esophageal squamous cell carcinomas (ESCCs), 1758 gastric cancers (GCs), and 2111 controls. SNP-level analyses were conducted using logistic regression models. We applied the resampling-based adaptive rank truncated product approach to determine the gene- and pathway-level associations. The EGFR pathway was significantly associated with GC risk (P = 2.16×10−3). Gene-level analyses found 10 genes to be associated with GC, including FYN, MAPK8, MAP2K4, GNAI3, MAP2K1, TLN1, PRLR, PLCG2, RPS6KB2, and PIK3R3 (P<0.05). For ESCC, we did not observe a significant pathway-level association (P = 0.72), but gene-level analyses suggested associations between GNAI3, CHRNE, PAK4, WASL, and ITCH, and ESCC (P<0.05). Our data suggest an association between specific genes in the EGFR signaling pathway and risk of GC and ESCC. Further studies are warranted to validate these associations and to investigate underlying mechanisms.  相似文献   
92.
Apelin, a novel adipokine, is the specific endogenous ligand of G protein-coupled receptor APJ. Consistent with its putative role as an adipokine, apelin has been linked to states of insulin resistance. However, the function of apelin in hepatic insulin resistance, a vital part of insulin resistance, and its underlying mechanisms still remains unclear. Here we define the impacts of apelin on TNF-α-induced reduction of glycogen synthesis in the hepatocytes. Our studies indicate that apelin reversed TNF-α-induced reduction of glycogen synthesis in HepG2 cells, mouse primary hepatocytes and liver tissues of C57BL/6J mice by improving JNK-IRS1-AKT-GSK pathway. Moreover, Western blot revealed that APJ, but not apelin, expressed in the hepatocytes and liver tissues of mice. We found that F13A, a competitive antagonist for G protein-coupled receptor APJ, suppressed the effects of apelin on TNF-α-induced reduction of glycogen synthesis in the hepatocytes, suggesting APJ is involved in the function of apelin. In conclusion, we show novel evidence suggesting that apelin ameliorates TNF-α-induced reduction of glycogen synthesis in the hepatocytes through G protein-coupled receptor APJ. Apelin appears as a beneficial adipokine with anti-insulin resistance properties, and thus as a promising therapeutic target in metabolic disorders.  相似文献   
93.
Nitric oxide synthase-3 (NOS3) has recently been shown to promote endothelial-to-mesenchymal transition (EndMT) in the developing atrioventricular (AV) canal. The present study was aimed to investigate the role of NOS3 in embryonic development of AV valves. We hypothesized that NOS3 promotes embryonic development of AV valves via EndMT. To test this hypothesis, morphological and functional analysis of AV valves were performed in wild-type (WT) and NOS3−/− mice at postnatal day 0. Our data show that the overall size and length of mitral and tricuspid valves were decreased in NOS3−/− compared with WT mice. Echocardiographic assessment showed significant regurgitation of mitral and tricuspid valves during systole in NOS3−/− mice. These phenotypes were all rescued by cardiac specific NOS3 overexpression. To assess EndMT, immunostaining of Snail1 was performed in the embryonic heart. Both total mesenchymal and Snail1+ cells in the AV cushion were decreased in NOS3−/− compared with WT mice at E10.5 and E12.5, which was completely restored by cardiac specific NOS3 overexpression. In cultured embryonic hearts, NOS3 promoted transforming growth factor (TGFβ), bone morphogenetic protein (BMP2) and Snail1expression through cGMP. Furthermore, mesenchymal cell formation and migration from cultured AV cushion explants were decreased in the NOS3−/− compared with WT mice. We conclude that NOS3 promotes AV valve formation during embryonic heart development and deficiency in NOS3 results in AV valve insufficiency.  相似文献   
94.
The neural cell adhesion molecule (NCAM) plays critical roles in multiple cellular processes in neural cells, mesenchymal stem cells, and various cancer cells. However, the effect and mechanism of NCAM in human melanoma cells are still unclear. In this study, we found that NCAM regulated the proliferation, apoptosis, autophagy, migration, and epithelial-to-mesenchymal transition of human melanoma cells by determining the biological behavior of NCAM knockdown A375 and M102 human melanoma cells. Further studies revealed that NCAM knockdown impaired the organization of actin cytoskeleton and reduced the phosphorylation of cofilin, an actin-cleaving protein. When cells were transfected with cofilin S3A (dephosphorylated cofilin), biological behavior similar to that of NCAM knockdown cells was observed. Research on the underlying molecular mechanism showed that NCAM knockdown suppressed activation of the Src/Akt/mTOR pathway. Specific inhibitors of Src and PI3K/Akt were employed to further verify the relationship between Src/Akt/mTOR signaling and cofilin, and the results showed that the phosphorylation level of cofilin decreased following inhibition of the Src/Akt/mTOR pathway. These results indicated that NCAM may regulate the proliferation, apoptosis, autophagy, migration, and epithelial-to-mesenchymal transition of human melanoma cells via the Src/Akt/mTOR/cofilin pathway-mediated dynamics of actin cytoskeleton.  相似文献   
95.
96.
Mesenchymal stem cells (MSCs) have been proved to exert considerable therapeutic effects on ischemia-reperfusion (I/R)-induced injury, but the underlying mechanism remains unknown. In this study, we aimed to explore the potential molecular mechanism underlying the therapeutic effect of MSCs-derived exosome reinforced with miR-20a in reversing liver I/R injury. Quantitative real-time polymerase chain reaction, Western blot, and IHC were carried out to compare the differential expressions of miR-20a, Beclin-I, FAS, Caspase-3, mTOR and P62 in IR rats and normal rats. TUNEL was performed to assess IR-induced apoptosis in IR rats, and luciferase assay was used to confirm the inhibitory effect of miR-20a on Beclin-I and FAS expression. Among the 12 candidate microRNAs (miRNAs), miR-486, miR-25, miR-24, miR-20a,miR-466 and miR-433-3p were significantly downregulated in I/R. In particular, miR-20a, a miRNA highly expressed in umbilical cord-derived mesenchymal stem cells, was proved to bind to the 3ʹ UTR of Beclin-I and FAS to exert an inhibitory effect on their expressions. Since Beclin-I and FAS were aberrantly upregulated in IR, exosomes separated from UC-MSCs showed therapeutic efficacy in reversing I/R induced apoptosis. In addition, exosomes reinforced with miR-20a and separated from UC-MSCs almost fully alleviated I/R injury. Furthermore, our results showed that miR-20a could alleviate the abnormal expression of genes related to apoptosis and autophagy, such as active Caspase-3, mTOR, P62, and LC3II. This study presented detailed evidence to clarify the mechanism underlying the therapeutic efficacy of UC-MSCs in the treatment of I/R injury.  相似文献   
97.
A GWAS study has reported that two single nucleotide polymorphisms (SNPs) were associated with predisposition to tuberculosis (TB) in African populations. These two loci represented the long-waited GWAS hits for TB susceptibility. To determine whether these two SNPs are associated with TB in Chinese population, we attempted an replication in a cohort of over one thousand Chinese TB patients and 1,280 healthy controls using melting temperature shift allele-specific genotyping analysis. We found that only SNP rs4331426 was significantly associated with TB in Chinese population (p = 0.011). However, the effect was opposite. The G allele of the SNP in Chinese population is a protective allele (OR = 0.62, 95 % CI 0.44–0.87), while it was the risk allele for African population (OR = 1.19, 95 % CI 1.12–1.26). No significance was found for SNP rs2335704. The results provided an independent support for a role in susceptibility to TB for SNP rs4331426. However, it also indicated that direct predisposition element to TB and the association effects may vary across ethnic groups.  相似文献   
98.
99.
Neuronal excitation leads to an increase of the extracellular K+ concentration ([K+]o) in brain. This increase has at least two energy-consuming consequences: (1) a depolarization-mediated change in intracellular pH (pHi) in astrocytes due to depolarization-mediated increased activity of the acid-extruding Na+/bicarbonate transporter NBCe1 (driven by secondary active transport, supported by ion gradients established by the Na+, K+-ATPase); and (2) activation of cellular reuptake of K+ mediated by the Na+, K+-ATPase in both neurons and astrocytes. Astrocytic, but not neuronal increase in NBCe1 activity and pHi is also seen after chronic treatment with either of the two anti-bipolar drugs carbamazepine or valproic acid. The third ‘classical’ anti-bipolar drug, ‘lithium’ increases astrocytic pHi by a different mechanism (stimulation of the acid extruding Na+/H+ exchanger NHE1). The acid extruder fluxes, which depend upon the change in pHi per time unit (ΔpHi/Δt) and intracellular buffering power, have not been established in most of these situations. Therefore their stimulatory effects on energy metabolism has not been quantitated. This has been done in the present study in cultured mouse astrocytes. pHi was determined using the fluorescent pH-sensitive indicator BCECF–AM and an Olympus IX71 live cell imaging fluorescence microscope. Molar acid extrusion fluxes (indicating transporter activity) were determined as pHi changes/min during recovery after acid-loading with NH3/NH4 +, NBCe1 mRNA and protein expression in the cultured cells by, respectively RT-PCR and Western blotting. Drug-induced up-regulation of acid extrusion flux was slow and less than physiologically seen after increase in K+ concentration. Energetically, K+ uptake is much costlier than NBCe1 activity.  相似文献   
100.
Wogonin is a flavonoid compound extracted from Scutellaria baicalensis and is well known as a benzodiazepine receptor ligand with anxiolytic effects. Many recent studies have demonstrated that wogonin modulates angiogenesis, proliferation, invasion, and tumor progress in various cancer tissues. We further explored the mechanism of action of wogonin on cervical cancer cells that contain or lack human papillomavirus (HPV) DNA. Wogonin was cytotoxic to HPV 16 (+) cervical cancer cells, SiHa and CaSki, but not to HPV-negative cells. We demonstrated that wogonin induced apoptosis by suppressing the expressions of the E6 and E7 viral oncogenes in HPV-infected cervical cancer CaSki and SiHa cells. The modulation of p53 and protein retinoblastoma (pRb) were also triggered by the suppression of E6 and E7 expressions. However, p53 was not altered in HPV-negative cervical cancer C33A cells. Moreover, wogonin modulated the mitochondrial membrane potential and the expression of pro- and anti-apoptotic factors such as Bax and Bcl-2. Wogonin also provoked the cleavage of caspase-3, caspase-9, and poly ADP ribose polymerase. After transfection of siRNAs to target E6 and E7, additional restoration of p53 and pRb was not induced, but processing of caspases and PARP was increased compared with wogonin treatment alone. Together, our findings demonstrated that wogonin effectively promotes apoptosis by downregulating E6 and E7 expressions and promoting intrinsic apoptosis in human cervical cancer cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号